POGO 14 summary: Timeseries workshop

- It was agreed that it would be very difficult (almost impossible) to place and manage data sets in one format and with one definition or with mutual priority on a POGO platform. Thus we agreed that it should be left up to the POGO partner Institutions to define their own Long Term Data sets and to provide a link (URL). These links could then be provided to the general user via the POGO website.

 Have produced list of global timeseries stations – for further discussion. The POGO website already has a list of timeseries sites

- It was agreed that it would be best if Alexandra Kraberg, based also on expertise from the SCOR LTER Programme, Coopeus and MaNiDA, should provide the first template suggestion for the URL links. It was suggested that this be accompanied by 1 Page descriptions of the Data. This template should be circulated for discussion in the group. The group will report back corrections/suggestions via the POGO secretariat to Alexandra Kraberg. The site should be launched at the POGO meeting 2013.

 Have produced list of international data repositories - for further discussion

- Institutions should also feel free to suggest additional links to national and international databases/programmes which could be useful to LTER science.
POGO 14 summary: Timeseries workshop

• It was agreed that national (US/ Europe etc.) working groups discussions would be useful in order to define areas where future LTER action is necessary.

• 1 day to 1.5 day was suggested to discuss matters further

What is the actual remit?

• Should not ‘reinvent’ the wheel
• Facilitate better co-ordination of current activities
 – Including better links between existing resources
 – Identify gaps, that POGO can usefully address?
• But do not get involved in data collection/assimilation?

Steps forward:
Need to consolidate and harmonize metadata/data and need to foster data visibility and synthesize information to facilitate data and metadata discovery
Different types of data

Field Data: Diatom *Mediopyxis helysia*

Molecular data

From Medlin et al. 2006

Ecological data

Contextual data

Molecular data

Types of data ctd.: Image material

Image intensive sensors:
Insitu flowcam
Flowcytobuoy.....

http://planktonnet.awi.de
Data

- Pangaea = one of the largest databases for environmental data in the world
- Parameter list for Helgoland linked to representative PLANKTON*NET images
- Data sets submitted to Pangaea with links to 'counted cells'

Data-Intensive Marine Science

- ARGO Floats System
- 3618 Floats
- 15-Nov-2012

http://www.argo.ucsd.edu/About_Argo.html
Downloaded 16/11/12
Data/Metadata/organisational diversity

Potential areas for harmonization of ocean observation:

- Confusing diversity of measured parameters, archival mechanisms, technical specifications, projects

Data acquisition/ methodologies
- OceanSites
- GOOS
- GACS
- LTER....
- Individual institutes’ programmes

Data/metadada repositories
- GEOSS
- ARGO
- PANGAEA
- CHLOROGIN
- IMOS
- IODE
- EMODNET
- MaNIDA
- PLANKTON*NET
- NOAA
- COOPEUS
- IMBER
- LTER

(Plus many auxiliary datasets in addition to core timeseries)

Data/metadata repositories
- OceanSites
- GOOS (SOOS,
- GACS
- Individual institutes’ programmes....

- Potential POGO Product: a resource that provides a global overview of activities
- Possible implementation: A webgis resource with tech, measurement methods and other sublayers for timeseries stations/repositories

Provide searchable summary information on all relevant topics (capacity building)
Benefits

- Vizualisation of available metadata for global timeseries facilitates easy overview
- Faster Aggregation and discovery of available data sources
- Create a flexible scientific and educational product
- Simple to maintain and extend (with sufficient manpower)

Next steps: 1. Decision on parameters

Parameters relevant to POGO:
- Length of timeseries, PIs,
- Involvement in projects
- core parameters,
- Types of data (numeric, sequences, images……)
- Auxiliary parameters (important to the timeseries but not core)
- Available equipment at timeseries station, tech specs
- Regularly held courses
- Regularly deployed ships
- Plots of stations per country/project…….

(need a core list to start: more can be added later)
Next steps: 2. Geodatabase

Production of Geotable with all required information: Decide on granularity

Sources: ICES, SCOR, Bermuda WS, own data acquisition

Next steps: workflows (Query)

Which layers?
Which queries?
Example Lena: Different layers

- Zoom
- Layer Selection
- Base map
- Vizualisation tools

Base map with Laptev Sea overlay
- ...plus depth contours
- ...plus elevations
- ...sample grids
Functionality

Graphing functions

Next steps: 2. Geodatabase

Production of Geotable with all required information: Decide on granularity

Sources: ICES, SCOR, Bermuda WS, own data acquisition
Next steps: workflows (Query)

Which layers?
Which queries?